给大家10条数学知识点的歌谣口诀,有了它,孩子更爱数学了,强烈建议爸爸妈妈收藏起来。

01路程问题(相遇)

【口诀】:

相遇那一刻,路程全走过。

除以速度和,就把时间得。

举例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?

相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。

除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120÷60=2(小时)

02路程问题(追及)

【口诀】:

慢鸟要先飞,快的随后追。

先走的路程,除以速度差,时间就求对。

举例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?

先走的路程,为3×2=6(千米)

速度的差,为6-3=3(千米/小时)。所以追上的时间为:6÷3=2(小时)

03鸡兔同笼问题

【口诀】:

假设全是鸡,假设全是兔。

多了几只脚,少了几只足?

除以脚的差,便是鸡兔数。

举例:鸡免同笼,有头36 ,有脚120,求鸡兔数。

求兔时,假设全是鸡,则免子数=(120-36×2)÷(4-2)=24

求鸡时,假设全是兔,则鸡数 =(4×36-120)÷(4-2)=12

04和差问题

已知两数的和与差,求这两个数。

【口诀】:

和加上差,越加越大;

除以2,便是大的;

和减去差,越减越小;

除以2,便是小的。

举例:已知两数和是10,差是2,求这两个数。

按口诀,大数=(10+2)÷2=6,小数=(10-2)÷2=4

05浓度问题(加水稀释)

【口诀】:

加水先求糖,糖完求糖水。

糖水减糖水,便是加水量。

举例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?

加水先求糖,原来含糖为:20×15%=3(千克)

糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3÷10%=30(千克)

糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)

06浓度问题(加糖浓化)

【口诀】:

加糖先求水,水完求糖水。

糖水减糖水,求出便解题。

举例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?

加糖先求水,原来含水为:20×(1-15%)=17(千克)

水完求糖水,含17千克水在20%浓度下应有多少糖水,

17÷(1-20%)=21.25(千克)

21.25-20=1.25(千克)

07和比问题

已知整体求部分。

【口诀】:

家要众人合,分家有原则。

分母比数和,分子自己的。

和乘以比例,就是该得的。

举例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。

分母比数和,即分母为:2+3+4=9;

分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。和乘以比例,所以甲数为27×2÷9=6,乙数为:27×3÷9=9,丙数为:27×4÷9=12

08差比问题

【口诀】:

我的比你多,倍数是因果。

分子实际差,分母倍数差。

商是一倍的,乘以各自的倍数,两数便可求得。

举例:甲数比乙数大12,甲:乙=7:4,求两数

先求一倍的量,12÷(7-4)=4,

所以甲数为:4×7=28,乙数为:4×4=16

09工程问题

【口诀】:

工程总量设为1,1除以时间就是工作效率。

单独做时工作效率是自己的,一齐做时工作效率是众人的效率和。

1减去已经做的便是没有做的,没有做的除以工作效率就是结果。

举例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?

+++

{1-(1÷6+1÷4)×2}÷(1÷6)=1(天)

10植树问题

【口诀】:

植树多少棵,要问路如何?

直的加上1,圆的是结果。

举例-1:在一条长为120米的马路上植树,间距为4米,植树多少棵?

路是直的。所以植树120÷4+1=31(棵)

举例-2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少棵?

路是圆的,所以植树120÷4=30(棵)

声明:本站资源来自会员发布以及互联网公开收集,不代表本站立场,仅限学习交流使用,请遵循相关法律法规,请在下载后24小时内删除。 如有侵权争议、不妥之处请联系本站删除处理! 请用户仔细辨认内容的真实性,避免上当受骗!